o

By |

Reproduced by

nflg

10

formati

ical I

1G4

£
-

-

KEOTTBUILDING, DAYTORN, 2, OHID

AR P

SET e RSt O PR R

Seonr

PR + YR 5203

L R TR A EA TR R,




2904

FILE COPY

o
PRI

"_‘t“

v fata

R [
,

\‘
¢ .
it

AT !\
D \ i

Ai1-85/18

OFFICE OF NAVAL RESEARCH
Contract N7onr-35801

NR -041-032

Technical Repert No, 85
COULOMB FRICTION, PLASTICITY, AND LIMIT LOADS
by

D, C. Drucker

GRADUATE DIVISION OF APPLIED MATHEMATICS
BROWN UNIVERSITY
PROVIDENCE, R. I,

January, 1953



A11-85
COULOMB FRICTION, PLASTICITY, AND LIMIT LOADS:L

by D. C. Drucker?

Abstract

sty

Additicnal attention is given to the somewhat subtle
but extremely important difference between Coulomb friction and
the apparently corresponding resistance to plastic deformation,
It is shown that the 1limit theorems previously proven for
assemblages of perfectly plastic bodies do not always apply
when there is finite sliding friction. Theorems are developed
which relate the 1imit loads with finite Coulomb friction to the
extrene cases of zero friction and of complete attachment, and
also to the case where the frictional interfaces are Ycementeg®

together with 2 cohecsionless soil,
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lThe results presented in this paper werce cbtained in the course
of research sponsored by the Office of Naval Research under
Contract N7onr-35801 with Brown University,
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Professor of Engineering, Brown University, Providence 12, R, I.
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Sliding Friction vs, Plastic Resistance.

It was pointed out previousin that the similarity
between the stress-strain relation for a rigid- or elastic-
perfectly plastic material and the force-displacement relation
for the Coulomb friction case, Fig. 1, may be misleading. The
essential feature may best be stated in mechanical-thermodynamic
terms for an assemblage of elastlc-plastic bodies in equilibrium,
Fig. 2, If either the attachment is comnlete or if all coef-
ficients of friction are zero, no work can be extracted from
the bodles and any equilibrium system of forces acting upon them,
In other words, thers is no way in which the bodies plus the
forces can act as an engine in this thermodynamic sense, They
cany however, if a coefficient of friction is finite3,

This point of view is made clearer and less abstract
by a comparison between Coulomb sliding friction and shearing
on a plane through a Coulomb cohesionless soll obeying the
generalized plastic potential laws, Fig. 3. The relatlon between
the normal vertical force N and frictional horizontal force
F 1n each case may be writtsn as F =pN. The displacenment
pieture, however, is fundamentally differentu. The block in
the frictiocn case slides in the direction of the force F., It
also moves up in the case of shearing of soil because of the
volume expansion which accompanics shear if the generalized plas-

"
tic potential rclations are followed ., The displacement or
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3D C. Drucker, "Some Implications of Work-Hardening and Ideal
Plasticity“ Quarterly of Applicd Mathematics, v. 7 (1950)
pp. bL11- h18

uD.C.‘Drucker and W. Prager, "Soil Mcchanics and Plastic Analysis
or Ligétlgqsign”, Quarterly of Applicd Mathematies, v, 1C (1952)
Dp. = 5v
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velocity vector makes an angle ¢ with the horizontal where
P = tan_lu is the angle between the straight line envelope to
the limiting Mohrs circles and the negative ¢ axis, Work is
done, therefore, against the downward force N. It is this
riegative work which prevents elastic~plastic bodles and the
system of forces acting on them from acting as an engine while

apparently similar fricticnal systems can.

Limit Theorems.

The two major limit theorem55’6 in a crude sense state

that an assemblage of elastic-perfectly plastic bodies, with
zero frictlon or complete attachment at each interface, will on
the one hand do the best they can to distrlbute stress to avoid
collapse and on the other will recognize defeat if any kinematic
collapse mode exists, Thils anthropomorphic approach is refined,
when geometry change is negligible, in the actual statement of
the theorems proved as:

1. Collansc will not occur if any state of stress can be
found which satisfies the equations of equilibrium and the boundary
conditions on stress and which is "below yield" at each point.

2, Collansc must occur if for any compatible flow pattern,
considered as plastic only, the rate at which the external forces
do work on the bodies equals or exceeds tne rate of internal
dissination,

3. Collapse takes place at constant stress so that strain

rates arc purcly plastic,
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5D C. Drucker, H.J., Greenberg, V. Prager, "The Safety Factor of
an Elastic-Piastic Body in Plane Strain‘ Journal of Agplied
Mechanics, v, 18, Trans. ASME, v. 75 (1951) pp. 371-37

D.C. Drucker, H,J, Grecnberg, W, Prager, "Extended Limit Design
Tnoorems for Continuous Media" Quarterly of Applied Mathematics
v. 9 (1952) pp 381-389,
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Now suppose that the coefficient of friction is finite
and non-zero on at least onc of the interfaces § of Fig. 2.
Is the system still intelligent enough to distribute the stress
to avold collapse, and arc the thcorems still valid? Trouble
immedistely appears in trhe upner bound Theorem 2, The rate of
internsl dilssipation cannot even be calculated in all cases because
frictional dissinuation is not determincd uniquely by the flow
pattern, It depcnds not alonc upon relative displaccoment rates
but also on the normal pressurc on the frictional interfacc a
guantity which will often not be known. This type of difficulty
does not appcar in the lower bound Theorem 1, It might seem
plausible to assumc that the thcorem is valid with the additional
requirement that the statc of stross not violate the friction
condition at the intcrface as well as staying below yield, A
simple examplc shows tiis hopeful intulitive approach to be in

error,

Illustrative Exanplcs.,
Fig. Y4a represcents two rigid blocks, the heavy horizontal

one 1s balanced on a rough lcdge while the light small one 1s on
an inclined planc with friction angle ¢ and inclination 4, The
contact surfacc between the blocks 1s at a slightly flatter angle
B than thc planc and will bc considerod frictionless. There nced
be no foree bectween th> blocks and yot & large forece N could be
carricd between the blocks without violating equilibrium, Fig. Wb,
If ¢ >a-p , such a force is stabilizing., Clearly, howcver,

if a > ¢ the block will slide down the planc and no stabilizing
force will bc developed, On the other hand, if the sliding was

really plastic shearing as for & scil, thcn the incipicnt veloeity
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vector V would noint away from the inclined plane at an angle
¢ as in Fig, Y4e, The large block would have to 1ift up and the
force N would indeed be mobilized to prevent sliding down the
vlane, A modified Theorem 1 1s thus seen to be improper for

the friction case but is againverified for the "plasticity"
problem,

The problem of Fig, 4 might seem tricky and exceptional
because the little block is not really confined by the large one
and because the bodies are rigid, A more elaborate example is
probably needed to demonstrate the point properly. The punch or
equally well the uniform pressure example of Fig, 5 has special
dimensions to avoid calculations but is ctherwise a good repre-
sentative plane strain problem, The interface UMNW between
the upper arch-shaped block and the lower support 1s supposed to
have an c¢xtremely large but finite friction angle, The yieid
stress in shear will be called k and either the Mises or Tresca
yield condition is employed.

Fig., 5a shows a discontinuous stress solution passing
through the interface as though the two bodies were one, This
is the often used 30O wedge solution slightly modified7. In the
cquilateral triangle region ABC the principal stresses are com-
pressive and of magnitude 3k in the vertical direction and k
horizontally. In thc sloping region BCDE the stress is 2k
parallel to BE and zero in the perpendicular direction., Hegion
DHE has principal stresscs +k and -k, The shearing stress,

if any, and thc normal traction on thce plancs of discontinuity

7P, G. Hodge anc¢ W, Prager, "Theory of Pcrfcctly Plastic Solids",
John Wiley & Sons, 1951, Section 26,

!
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BC, DE, HE, HD are continuous across the planes.

Both compressive and shearing tractions ¢ and =T in
magnitude which are easlly caleulated, will act on the interface
UMNW, The coefficient of frietion p 1s assumed large enough
so that <<po, Therefore, the stress field of Fig. 5a multiplied
by a number ever so slightly less than unity will be "below yleld"
everywhere and does not violate the friction condition, The total
force P per unit dimension perpsndicular to the paper can be
made as close to 3ko as desired,

The question of whether or not the bodies are able to
adjust themselves in this statlic manner is answerdd by the possible
discontinuous rigid-bleck kinematic collapse pattern, Fig. Sb,
Block ATB is ta%en to more vertically downward with velocity
V requiring ATMU and BTNW to move at 45° with velocity V/V2
so that separation occurs on MU and NW. Block MTN is
staticnary. The velocity discontinuity on the surfaces of sliding,
SIM and ATN each of length by2, 1s VAZ. The rate of energy
dissipaticr per unit perpendicular dimension is just
2{t * o¥2 * V/VZ) = 2kbV because in this permissible virtual
disnlacement pattern there is separation along the friction surfaces
MU and #W and they contribute nothing. Equating the rate of
work of the external forces PV to 2kbV gives the upper bound
and in this case correct result for Fig., 5, P = 2kb, and not
3xh,

The intuitive limit theorem on the inherent intelligence
of the material is thus seen to be incorrect for finite and non-
zero friction., Again, substitution of an elastic-plastic "soil"
for the Coulomb friction interface fixes matters, Surfaces MU

L
and M/ do increase the energy dissipation and the value 3kb



A11-85 7

is a proper lower bound if the angle ¢ 1s large enouzh,

It mizht be thought that the separation counter-examples
given in this scetion are unfair, However, it is precisely
the frzedom 1n the frictlion case to slide with an arbltrary
normal stress on the surface of sliding and therefore an
arbitrary dissivation which prevents the application of the
"intuitive thcorems", Sliding at zero normal stress and asctual
separation are essentially the same., An angle of 450 instead of

44° in Fiz. 5 would not really change the result,

Friction Theorems.

The question now arises as to what can be said about
limit loads for assemblages of bodies with frictional interfaces,
Two thecorems seem intuitively obviouss

A. Any set of loads which produces collapse for the condi-
tion of no reclative motion at the interfaces will produce
collapse for the case of finite friction, No relative
motion is a more inclusive term than infinite friction
because separation is not permitted,

B. Any sct of loads which will not causc collapse when all
coefficients of friction arc zero will not produce
collapse with any valucs of the coefficlents,

Although at this stage intuition may not scem completely
rcllable, the theorems are in fact truc, Thelr proof follows in
part the tochnique employed in developing the 1limit theoroms for
plastic bodiesé. The most important tool is the theorem of

virtual work

, _
*T T Ty %, T

T u,dA + j Fudv:-J s eudv+j T3A 0, dS (1)
J; i1 v 1% v 1371} g 1 1
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in which the summnation convention is employedB. There 1is #no
necessary tie between the equilibrium system of surface tractions
Tz, stresses oi;, and body forces FI, and the compatikble
system of velocitiles Ei’ strain rates Eij and veloclty dis-
continuities z&;i. The surface area A of the assemblage of
bodies of volume V does not include the frictional interfaces
S. For convenience of description, the velocity will be assumed
continuous except across S. The term 52‘1’}351&1 for velocity
discontinuities in the material is omitted but thls does not
actually restrict the generallty of the result.S’6
Use will also be made of the propertles of the yield

surface f(oij) = k2, Fig. 6, The rate of dissipation of energy

per unit volume, D = oij.iﬁ’ is uniquely determined by the
plastic strain rate ij' The "vector" éi?i Fig. 6, is normal

to the yield surface at a smooth point or lies between the normal
to the surface at adjacent points to a vertex or corner, Further-
more, the surface is convex so that the dot product of the plaatic
strain rate "vector" with any stress vector to a point 0i5 inside

2

the surface, f(oiS) < ky cannot be as large as D.

||p op
913813 <D = 9444y

Pt
™o
A

N
To prove Theorem A, assume that a set of loads Ty, F?

produces collapse when all relative motion is prevented at the
interfaces S (bodies welded together). This type of composite

body can be analyzed by the established limit theorems which state

N*N [ NeW, g Ne N .

8Rofer ence 7, bhapfer 8, Aa an example,
v Lary *e ®
;3513“ d aX + cycy + d s + ijrxy Ty'Y + Tzifzx
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and €i§ is purely nlastic,

e'i?(elastic) =0 (&)

For Theorem A to be false, there must exist some equilibrium
state of stress di? such that f(di%) < k2. Using the virtual
work Equation (1), with Uy, £4) as the compatible state,

R 4 o ? . N 'N
ollan [ il = [ o fav s [ ol (5)
LA vy l/v S

However, AGN = 0 Dbecause the veloeity solution represents no
- A N N* N

relative motion at S and, from Inequality (2), Sgye43 < 033815
Equation (5) is, therefore, in contradietion to Inequality (3)
and Theorem A can not be false.

The proof of Theorem B starts from the given set of

0

loads Ty, Fg and stresses di? which do not cause collapse
with p = 0. Next suppose that collapse can occur for p> O
with a collapse field uj, €5, Au; and stress rield S5

Virtual work Equation (1) becomes

0°B r 0B f 0. B S O, B
T;uydA + F ujdv = ¢, €,,dv + T,AuydS (6
jA 19 J, T IREREET g 18U )
and the collapse condition is
[ 0B 0B B: B X B,'B
JA Tjuqda + Jv Fiugdv 2-L{v°ijsijdv + o T Auyds (7)

Conditions (6) and (7) are incompatible and Theorem B cannot be
. *B _B,'B

false because di?ei? > °i?513’ TfAui 1s a frictional dissipa~

tion and, therefore, zero or positive, and Tgﬁug is zero or

negative, The last statement follows from the fact that Tg

is normal to S at each point and 1is coumprcssive while Aug is



A1l1-85 10

a relative tangential displacement, and possibly a separation as
well; but not an overlap.

The friction theorems A and B have thus been proved for
all stable convex yileld functions, They occasionally cecnable the
limlt load to be computed quite precisecly for finite non-zero
friction, The well known two dimensional punch problem for a
Prandtl~Reuss or a Mises material provides such an example, Two
solutions are avallable for upper bound computations. One by
Prandtlg, Fig, 7a; contains a rigid reglon which acts as an ex-
tension of the punchj; there is no relative metion between the
punch and the contact areca. The other by Hilllo, Fig. 7b, assumes
gcoro friction and appreciable slip does take place, Both solue
tions glve the same answer for the average pressure, p = (2+n)k
vwhere k 1is the yield strcss in shear. A lower bound solution
of 9k has been obtainedll. Thercfore, the limlt pressure is
between 5k and 5,14k for all possible values of the coefficient
of frictlon,

It will often be found, however, that Theorcms A and
B do not provide very closc bounds. The concept of the plastic
cohesionless soil interface, alrcady discusscd in considerable

dctail, may then be of further help in the following theorem,
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9L. Prandtl, "Uaber die Haerte plastischer Koerper", Nachrichten

von der Koeniglnchen Gesellschaft der Wissenschaften zu
Goettingen, iiathematiseh-physil-alische Klasse (1920) pp. 74+-85.

198, K111, "The Plestic Yielding of Notched Bars under Tension',
?uarteriy Journal of techanies and Applied liathematies, v, 2
1949) pn. 40-52,

Ra T, Shield and D. C, Drucker, "The Application of Limit Analy
sls to Punch Indentation Problems“ to appear in Journal of
Applied Mechanics,

p—,
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Ce Any set of loads which wlll not cause collapse of an
assemblage of bodies with frictional interfaces, will
not produce collapse when the interfaces are "cemented"
together with a cohesienless soil of friction angle ¢ =
arctan y.

The proof of Thecrem C follows essentially from the
observation that the state of stress in the friction case satisfies
the conditions f(o34) ¢ K2 and |z € plolat impending collapse,
A safe statc of stress exists, therefore, for the soil case when

collapsc aocs not occur in the frietion problem.

The 1imit load for an asscmblage of bodies with
frictional interfaces 1s bounded below by the limit load for the
same bodics with zero frictlon on the interfaccs., It is bounded
above by the 1limit load for no relative motion at the interfaces
and also by the limit load for the same assembla; ¢ cemented at
the interfaces by a cohesionless soil, Limit theorctis appiicable

to these bounding problems do not apply generally,
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(b)

FIG, 5. TWO DIMENS!ONAL PROBLEM WiTH ELASTIC-PLASTIC
BODIES (a!AN EGUILIBRIUM SOLUTION  (b) A VELOCITY (KINEMATIS
SOLUTION INVOLVING SEPARATION
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FIG. 6. THE YIiELD SURFACE
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(h)
FIG. 7 (o) PRANDTL AND (b)HILL SOLUTIONS TO PUHNCH PROBLEM
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